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Abstract—The problems of expansion of a hollow sphere, or of a spherical cavity in an infinite
medium, are treated for homogeneous, isotropic. incompressible, elastic-plastic hardening ma-
terials. Five special material response laws. for which the solutions for the applied pressure or
tension, and the stress distribulion, can be represented in terms of elementary functions, are
set down. Four of them involve three parameter plastic hardening laws and the fifth involves
a two parameter hardening law. Important features of the solutions for compressible materials
are obtained from the solutions for incompressible materials. Analysis of the condition for the
occurrence of stationary values of the applied load shows that three types of behavior are
possible. The pressure or tension may increase monotonically, or it may increase and then

decrease. or it may increase, then decrease. and then increase again.

NOTATION

Inner radius of hollow sphere

Initial value of a

Value of a at initial yield

Value of « at total yield

Constant in hardening law

Outer radius of hollow sphere

Initial value of b

Value of b at initial yield

Value of b at total yield

Radius of elastic-plastic interface

Constants (/ = 1. .. .. 5)

Young's modulus

Response function

Derivative of f

Elastic response function

Plastic response function

Response function

Derivative of g

Uniaxial compressive stress response function
Elastic compressive stress response function
Plastic compressive stress response function
Uniaxial compressive stress response function
Elastic compressive stress response function
Plastic compressive stress response function
Bulk modulus

Positive integer

Applied pressure or allround tension

Value of P at initial yield

Value of P at total yield

Maximum value of P

Volume average of hydrostatic pressure
Pressure-porosity function

Radial coordinate in spherical system

Initial value of r

Region of space

Cartesian components of surface traction
Volume of the region R

Measure of stretch (x = A*?)

Valueof xatr = ¢

Valueof xatr = b

Value of x at r

Value of x at yield

Cartesian coordinates

Initial yield strength

Constants in hardening laws i = 1. ... . 5)
Ultimate strength

Measure of porosity: a = bY(H* — oY)

645
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Initial value of o
a; Value of a at initial yield
a: Value of « at total yield
Value of a at pressure maximum
Value of a at pressure minimum
& Particular value of a
B Constant in hardening law
v Constant in hardening law
R Boundary of the region R
AV Change in volume V

2

¢ Compressive logarithmic strain (e = —In A)
e, Valucofeatr = ¢
¢ Yield strain

€
€ Particular value of €
e¢* Particular value of €
¢; Particular valuesofe(i=1,...,4)
Spherical polar coordinate
6o Initial value of
k Constant in hardening law
k Particular value of
A Axial or radial stretch
A, Valueofhatr =g
A, Valueof Natr = b
A, Value of A at r N
X Value of A at yield (A = ¢79)
p Shear modulus
o Compressive stress
o, Valueofocatr = ¢
o, Valueofoatr =5
o, Radial component of stress
aee Tangential component of stress
ose Azimuthal component of stress
o;; Cartesian components of stress
0;; Cartesian components of average stress
¢ Spherical polar coordinate
bo Initial value of ¢
U Material constant (¢ = Y/2p)

1. INTRODUCTION

The problem of expansion or compaction of hollow spheres of elastic-plastic material,
or of spherical cavities in elastic-plastic media of infinite extent, has received consid-
erable attention. Quasistatic solutions of these problems for both elastic-perfectly plas-
tic materials and hardening materials have been given by [1] and by [2]. These results
are particularly useful in micromechanical modelling of the response of porous metals,
similar to the model{3] for elastic materials. Thus, [4] used the solution for compaction
of a rigid-perfectly plastic hollow sphere to model the compaction behavior of metal
powders, and [5] used the dynamic solution for an elastic-perfectly plastic hollow sphere
under time-varying external pressure to obtain a rate-dependent compaction equation
for porous metals.

Solutions of the spherical expansion or compaction problems for strain hardening
materials usually involve integrals which must be evaluated numerically. Recently,
Carroll and Kim[6, 7] obtained compaction equations for metal powders by solving the
compaction problem for a hollow sphere of incompressible, rigid-plastic hardening ma-
terial, in closed form. Their approach was to choose hardening laws which allow eval-
uation of the compaction integral in terms of elementary functions.

The problem of the expansion of a hollow sphere of homogeneous, isotropic, in-
compressible, elastic-plastic hardening material under uniform internal pressure or ex-
ternal allround tension is treated in the present study. The assumption of incompres-
sibility leads to a considerable simplification, since the form of the deformation field
is known ab initio. In fact, the inner radius at any time determines the entire defor-
mation, so that the deformation field is described by a single parameter. Also, because
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of incompressibility, the relevant material response property is the function which
relates the stress to the axial strain for monotonic uniaxial compressive stress loading.

The applicd pressure and the stress distribution are first represented in terms of a
single function f, which is dcfined by a first order ordinary differential equation in-
volving the compressive stress response function. This equation helps to identify the
class of elastic and plastic response laws for which solutions of the spherical expansion
problem can be cxpresscd in terms of clementary functions. Five such elastic-plastic
response laws are adopted. Four of them involve four material constants (the elastic
shear modulus, the initial yield strength, and two hardening parameters) and the fifth
involves three material constants. They describe either saturation hardening or hard-
ening with unbounded ultimate strength, and they should provide good approximations
to actual elastic-plastic hardening data over a wide range of strain.

For each of these response laws, integration of the ordinary differential equation
gives the solution function f as a combination of elementary functions. This gives the
pressure and the stress distribution in closed form. Solutions are also given for ex-
pansion of a spherical cavity in a medium of infinite extent.

The solution of the spherical expansion problem for incompressible elastic-plastic
response can be used to obtain the most important features of the solution for com-
pressible materials. This is done for both internal pressure and external allround ten-
sion.

An interesting feature of the solutions is the occurrence of a maximum of the
applied pressure (or allround tension). Hill[8] observed that the behavior subsequent
to the pressure maximum is unstable and corresponds to necking and bursting of the
sphere. This instability may have important micromechanical implications with regard
to rupture and crack propagation involving nucleation, growth, and coalescence of voids
in tensil stress fields. Carroll[9] derived a condition for the occurrence of stationary
values of the applied pressure in spherical expansion, for incompressible elastic ma-
terials. The same condition applies for elastic-plastic materials with the general hard-
ening lawt. The derivation of this condition is sketched for general material response
and its implications with respect to the special hardening laws for examined. Realistic
compressive stress response allows for three types of behavior of the pressure in in-
flation of a hollow sphere. The pressure may (A) increase monotonically, or (B) increase
to a maximum value and then decrease (or remain constant), or (C) increase mono-
tonically (for sufficiently thick-walled spheres) and increase, decrease, then increase
again (for sufficiently thin-walled spheres). Behavior of type B is most typical of elastic-
plastic response. The pressure maximum instability is the only type treated here; the
possibility of bifurcation instabilities is not examined.

1t should be emphasized that the analysis in this study is not based on any particular
formulation of the theory of elastic-plastic response, nor does it involve any kinematical
approximations. It is not necessary, for instance, to distinguish between work hardening
and strain hardening. Given any three-dimensional finite strain theory, it is only nec-
essary to compute the uniaxial compressive stress response function. This then deter-
mines the behavior in spherical expansion.

The methods used here for the spherical problem can be used to solve the problem
of the expansion of hollow cylinders or cylindrical cavities for materials with special
elastic-plastic material response.

2. THE MATERIAL RESPONSE

We first consider the response of a homogeneous, isotropic, incompressible, elas-
tic-plastic material under monotonic uniaxial compressive stress. We write the rela-
tionship between the compressive Cauchy or true stress o and the axial compressive

t Since the relevant response property is the uniaxial compressive stress response, and since unloading
is not treated, the solutions obtained here pertain to nonlinearly elastic solids. However, an elastic phase
and a plastic phase of the loading function are defined. instead of a strain energy function, and the radius
of the elastic-plastic interface is found as part of the solution.
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logarithmic strain e as

o = H(e) =

He) O=<e=se R}
(€ <e< .

H"{¢)

where € denotes the elastic limit or yield strain. Although we will not treat unloading.
it is convenient to introduce the notations H* and H” for the elastic and plastic portions
of the response function.

The responsc law (2.1) may also be written in terms of the stretch A—the ratio of
deformed length to undeformed length—thus

O [
with
€ = —InA\; A= e7F 2.3)
The functions H and / are related through
H(e) = h(e™*); h(\) = H(=In MN). (2.4)
The initial yield strength Y is given by
Y = HE) = HP(&) = h“(\) = h"(N). (2.5)

The obvious implication of incompressibility is that the lateral logarithmic strain
is — % e. We also assume that the material response is unaltered by superposition of
a uniform hydrostatic pressure.

3. VOLUME-PRESERVING EXPANSION OF A HOLLOW SPHERE

A volume-preserving, radially symmetric deformation of a hollow sphere is de-
scribed by

k)

-t = dd - dd, 6 = 0. b = by (3.1)

where (r, 8, ¢) are spherical polar coordinates of a typical particle, a is the inner radius
of the sphere, and the subscript 0 denotes initial values. We assume that the cavity
expands, so that ¢ = ay. Then the local deformation is a radial contraction, with stretch
A, given by

(3.2)

and with equal lateral stretches 1/\/A,. The local Cauchy or true stress state is a com-
pressive radial stress ¢ = g4y — 0, superposed on a hydrostatic pressure —aya. The
hydrostatic pressure has no effect, because of incompressibility?. Thus, the relevant
material property is the response under uniaxial compressive stress.

The first equation (3.1) gives, in particular,

b* — by = d* - ai, (3.3)

+ We are excluding a class of materials which are incompressible but have a plastic response which
depends on the mean stress, e.g. Drucker-Prager or Mohr-Coulomb conditions.
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where b is the outer radius of the sphere. It is evident from eqn (3.1) that the volume-
preserving radial expansion is a one parameter deformation, in the sense that the value
of the inner radius a at any time completely determines the current deformation. The
state of deformation can be described equally well by a nondimensional parameter «,

with initial value aq, which is a measure of the porosity of the sphere and is defined
by

a = bbb — d®), g = bY(by - ad). (3.4)
The radial stretches A, and A, at the inner and outer boundary are given by
N7 = ada® = (o — D = 1); AP = bi/b® = ayla. (3.5
The radial equation of equilibrium is

do,, 2
i + = (o0 — ow) = 0. (3.6)
dr r

If the inflation is brought about by pressurization of the inner boundary, then the
boundary conditions are

o= —P at r = a; og,=0 at r=b. (3.7)
The material response law is

CGyg — Tpr = IT(A,'), (38)

with A, given by eqn (3.2). Equations (3.6)-(3.8) give

P+ 2f'h(>\,)d—r’

Crr =
T = O = T + h()\,) (39)
b
P=2 f ho\,)d{.

The change of variable

aj(a -
NN = - @ - = 1 - B (3.10)
gives a more convenient form of the solution
2 (%,
o, = —P+—f h(x*°)
3 Xu l - X
Tos = Tpd = Tpr + h(XEIS) (31[)

P = _Z.f"b h(x¥3) dx ,
3 Xa - X

1
with

X, = ada’ = (ag — Da — 1); xp = b3/ = avla. (3.12)
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Now, let f(x) be a function whose derivative f'(x) is given by
’ 2 2/3
flix) = Sh(x (1 = x). (3.13)

The solution (3.11) may be written
Ty = ~P + f(-xr) - .f(xu)

Oeo = Tps = O + h(xF?) (3.14)
P = f(xy) — f(xa).

It

The initial response of the hollow sphere is elastic. Yielding begins at the inner
boundary when the stretch A, reaches the value \. It follows from eqns (3.5) and (3.10)
that initial yield occurs at porosity a;, given by

i (3.15)
oy — 1
i.e. by
Qy = 1 + ((1() - ])/X’ =1 + ((10 - ])(’36/2. (3]6)

As the pressure increases, a spherical elastic-plastic interface propagates outward. The
radius ¢ of this interface is found from eqn (3.10), thus

3 3
3 at - a(‘) apla — ap)

TN Tm-nad-a 3.17)

Eventually, this interface reaches the outer boundary. The porosity «, corresponding
to the onset of total yield is given by eqns (3.5) and (3.10) as

az = aplk = ape’¥?. (3.18)
The values (a;, b,) and (a2, b2) of the inner and outer radii at initial yield and total

yield may be read off from eqns (3.5), (3.16) and (3.18).
The solution for the pressure in the third equation (3.11) may now be written

% :h he(x*3) " dj (o < a = ay)
2 £ dX Xb
P = (£ EJ‘\' hp(xﬂ3) 1 - x + % R h"(xm) 1 (o) < a < ay) (3[9)
2 [ (23
LS Xt h (x ) ] - X (az = « < x).

It is evident from eqns (3.13) and (3.19) that it is convenient to write

_Jfr d=x=9
fo) = {f"(x) (¢ =x>0), (3.20)

with

fe@®) = fPR). (3.21)
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and

g4 fix) =

(2] —
e X2 - x)

Wi

3.22)

o

(—;i—xf”(x) = = hP(x*)/(1 - x).

LS

The solution (3.19) may be written as

Fe(x) = f7(x.) (o< a<a)
P =3 fs) — fP(x.) (o) Sa<ay) (3.23)
fPxp) = fPx)) (a2 < a<x),

and the stress distributions in the elastic and plastic regions may be read off from the
first two equations (3.14) by replacing the functions f and h by f° and #° and by f*
and A”, respectively.

If the spherical expansion is brought about by application of a uniform external
allround tension P, then the boundary conditions are

o,=0 at r =a; o,=P at r=b. (3.24)

The expression for the allround tension P is the same as that given above (in the third
equation (3.9), for instance) but the stress distribution must be altered by superposition
of a uniform hydrostatic tension P.

4. SPECIAL RESPONSE LAWS

The displacement solution for volume preserving spherical expansion is given by
eqn (3.1). The stress solution for uniform internal pressurization of a hollow sphere of
homogeneous, isotropic, incompressible elastic-plastic (or nonlinearly elastic) material
is given, formally, by eqns (3.12)-(3.14). If the uniaxial stress response function is
partitioned into an elastic response and a plastic response, as in eqn (2.2), then the
stress solution is given by eqns (3.12) and (3.14), supplemented by eqns (3.20)~(3.22).

Of course, this solution is no more complete than that given in eqns (3.9). The
introduction of the function f, defined by the first order ordinary differential equation
(3.13), is strictly a matter of notation. Calculation of the stresses and the pressure-
porosity relation, for the general form of the uniaxial stress response function, will
involve numerical integrations.

Explicit expressions for the stresses and the pressure-porosity relation may be
obtained for special forms of the response law. These forms are such that the integrals
in eqns (3.9) may be evaluated in terms of elementary functions or, equivalently, for
which the ordinary differential equations (3.13) or (3.22) can be integrated in closed
form. This necessitates choosing response functions 4 having the form

hO\) = %(1 — AP ) @.1)

Q
i

or
o = H(e) = %(l — e73Y)f' (e 32, 4.2)

where f' is the derivative of a combination of elementary functions.
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The elastic response
A convenient form of the elastic response law is

o =2u(l — e3?) O=se=<e¢, 4.3)
where . is the shear modulus. This reduces to the more conventional linear form o =
3pne, for small strains. (Young's modulus E = 3u for incompressible materials.) With

this choice of the elastic response, the first of equations (3.22) leads to

fex) = % ur. (4.4)

The form (4.3) of the elastic response law also leads to
f=e 32 =1-y; =Y 4.5)
and eqns (3.15)-(3.17) and (4.5) give

0‘0"‘1’. _ o 3

3 a — Qg
= ap

Ylag — 1) '

(4.6)

The plastic response

Various realistic compressive strain hardening laws have the form (4.2). For each
such law, the function f”(x) is found by integrating the second ordinary differential
equation (3.22) with initial condition obtained from eqns (3.21) and (4.4), i.e.

fri8) =

Wi

Bt 4.7)

1. A saturation hardening law. The plastic response law

o
Y,

Yi{l + k(1 —e 3%)} (ese<wx)
YIL + k),

(4.8)

where k and v are positive constants, describes saturation hardening with initial strength
Y and ultimate strength Y., given by

I + k
Y. = Yw. 4.9)

The hardening rate do/de decreases monotonically for y < 1, and for y > 1 it increases
up to strain €, = 2/3 In +y, and then decreases. The jump in do/de at the initial strain
€ is always negative for y < 1, and it is nonpositive for y > 1 provided

K< INY(y = 1). (4.10)
Elastic-plastic response curves from eqns (4.3) and (4.8), with ¢ = .005, x = 4, and
various values of v, are shown in Fig. la.

The second equation (3.22) and eqn (4.8) give

1
1 -

%f”(x)=§Y|{ X+K(] -—x)*"} 4.11)
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Fig. 1. Stress-strain curves and pressure response curves in spherical expansion for the material
defined by equations (5.1). (a) Stress-strain curves from eqns (5.1), with ¢ = ¥/2u = .005. «
= 4, and y = 0.2, 0.4, and 0.8. (b) Pressure response curves, from eqn (5.2), for a hollow
sphere with initial porosity ap = 1.25. (c) Pressure response curves, from eqn (5.2), for a hollow
sphere with ap = 7. (d) Pressure response curves, from eqns (8.5) and (8.7}, for a spherical
cavity in an infinite medium.
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Fig. 1. Continued.

and eqns (4.5), (4.7), and (4.11) give

fPix) = — 2 Y, {In(l - x) + 5(l - x)"} + C,
3 Y 4.12)
2 4
C = 30 {iny + wy?/v} + 3 = ).
2. A "pseudo-exponential’’ hardening law. The plastic response law
o = Yo{l + xe™(l — e 3%)} (€ <e <x) (4.13)
Y = YHI + xd/(1 — )73},

where k and vy are positive constants, describes hardening with unbounded ultimate
strength. The hardening rate increases monotonically for v = 3/4, and for vy < 3/4 it
decreases up to strain €; = 4/3 In(3/2y — 1) and then increases. Fory = 3/4, eqn (4.13)
reduces to

o = Yy(1 + 2« sinh 3e/4) (€ =e<x). 4.149)
Elastic-plastic response curves from eqns (4.3) and (4.13), with ¢ = .005, k = 1, and

various values of v, are shown in Fig. 2a.
The second equation (3.22) and eqn (4.13) give

:_x fPx) = % Y2 ( + xx‘z’“) (4.15)

1
I —x
and eqns (4.5), (4.7), and (4.15) give

2 K
P = - - — — 1293
fP(x) 3 Yz{ In(1 — x) + T 27/3.: } + C,

2 K(l - ¢)|—21/3

(4.16)
4

w

Equation (4.16) does not apply in the special case y = 3/2. In this case, the hard-
ening law (4.13) describes exponential hardening. It is most conveniently treated as a
special case B = 1 of the next hardening law (3.17).
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c/Y
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a/a,

Fig. 2. (a) Stress-strain curves from eqns (4.3) and (4.13), with ¢ = 005, = l,and y = 0,

1. and 2. (b) Corresponding pressure response cruves, from eqns (8.5) and (8.8), for a spherical
cavity in a infinite medium.

3. Another saturation hardening law. The plastic response law

]

ag
Y

Ys{l + k(] ~ B + Be™™?)} (Ese<x)

4.17)
Y(I - g1 — BY + x),

]

where k and 8 are positive constants, with 8 < I, describes saturation hardening with
ultimate strength

(I - Byl — B + x)

TRy STy “19

except in the limiting case B = 1, when it describes exponential hardening with un-
bounded ultimate strength. The hardening rate decreases monotonically for p = 172,
and for B > 1/2 it increases up to strain €3 = 2/3 In(B/(1 — B)) and then decreases.
Elastic-plastic response curves from eqns (4.3) and (4.17), with ¢ = .005, x = 1, and
various values of B, are shown in Fig. 3a.

The second equation (3.22) and eqn (4.17) give

d 2 1 K
E}fp(")=iy‘"‘{1 i TR —B+Bx)} (4.19)
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Fig. 3. (a) Stress-strain curves from eqns (4.3) and (4.17), with ¢ = .005.k = l.and B = 0.

0.4, and 0.8. (b) Corresponding pressure response curves from eqns.(8.5) and (8.9). for a spher-
ical cavity in an infinite medium.

and equations (4.5), (4.7) and (4.19) give

2 1 —x
fPix) = —§Y3 {In(l —x)+ kln Tm} + C; (4.20)
2 b )L
C3—3Y3{ln¢+xln1_8¢}+3p.(l J).

The response law (4.17) is a particular case of the more general plastic response
law

o = A{l + /(1 — B + Be 3*?)}, (4.21)
which allows integration of the second equation (3.22) in closed form for integer or

inverse valuesy = nori/n(n=1,2,...).
4, ""Pseudo-linear’’ hardening laws. The plastic response law

o= Yl +ke(l — e *?)} (E<e<x) (4.22)

Y/{l —%»«uln(l —w)},

where « is a positive constant, describes hardening with unbounded ultimate strength
which approaches linear strain hardening at higher strain. The hardening rate increases

Y,
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up to strain €5 = 4/3 and then decreases. Elastic-plastic response curves from cqns
(4.3) and (4.22), with ¢ = .005 and various values of k. are shown in Fig. 4a.
The second equation (3.2) and eqn (4.22) give

d 2 ] 2
2oy = = _ = P 4.23
d.\‘f (x) 3 Ya{l . 3Kln \} ( )

and eqns (4.5), (4.7), and (4.23) give

frix) = - 2 Y, {ln(l - x) + ZK(J\' Inx — x)} + C,4

3 3 (4.24)
2 2 4
Ca=3Ye [lmp + 3Rl - win(l - @) — 1+ q,}] + 3l = ).
Plastic response laws of the form
o= A{l + ke(l — e~ )} (n=213,..) (4.25)

provide better approximations to linear strain hardening as n increases. and they also
allow solution of the second equation (3.22) in closed form. However, the expressions
for f”(x) become increasingly complicated as n increases. The pseudo-exponential hard-

'a T ¥ ¥
8+ N
6 .
oy 5
4} 3 -
1
2t -
B 1 1 1
[2] 2.5 1.8 1.8 2.8
[
[}
hd 1 1 I
5
6 .
3
1
X 4 R
a
2 =
1 1 1
el 2 3 4 S
0/9g
Fig. 4. (a) Stress-strain curves from eqns (4.3) and (4.22), with ¥ = .005and k = |. 3. and 5.

(b) Corresponding pressure response curves, from egns (8.5) and (8.10). for a spherical cavity
in an infinite medium.
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L
1 1.2 1.4 1.6 1.8 2.0
a/ag

Fig. 5. Stress-strain curves and pressure response curves in spherical expansion for the matcrial
defined by eqns (4.3) and (4.27). (a) Stress-strain curves for ¢ = .005. x = [0.and y = 0. .5,
1, and 2. (b) Pressure response curves, from eqn (5.11), for a hollow sphere with initial porosity
ap = 1.1. (c) Pressure response curves, from eqns (8.5) and (8.11), for a spherical cavity in an
infinite medium.
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ening law (4.13) may be generalized in a similar manner to more closely approximate
exponential hardening. Exponential hardening laws of the form

o = A(l + ke™) (4.26)

allow solution of the second equation (3.22) in closed form for values vy = 3n/2 or

32n(n = 1,2,...). Again, the expressions for f”(x) become increasingly complicated
as n increases.

5. Power law—exponential hardening. The plastic response law

o = Ys{l + ke'(e™? - 1)}

2 1 Ty
o) )

with k and v positive, describes hardening with monotonically increasing hardening

rate and unbounded ultimate strength. Elastic-plastic response curves from eqns (4.3)

and (4.26), with ¢ = .005, x = 10, and various values of vy, are shown in Fig. 5a.
The second equation (3.22) and eqn (4.27) give

(4.27)
Ys

i

d 2 ] 2 Y
- fPr —_ - J— -
fP(x) 3 Ys{l _— + K( 3In x) x} (4.28)

and eqns (4.3), (4.7), and (4.27) give

2

“ 2 Y
— = Ys {ln(l - Xx) + < (—) (—In x)'*’} + Cs

2 Kk [2\" I\ 4
3Y5{ln¢+]+y<§> <lnm> }+§u(l—\b).

frx)

Cs

5. SPHERICAL EXPANSION FOR SPECIAL MATERIALS

The response laws treated in the previous section do not, of course, exhaust the
possibilities of finding solutions in closed form for the problem of pressurization of
hollow spheres of elastic-plastic hardening materials. In particular, other useful hard-
ening laws may be found by linear combinations of those just treated. However, the
set of plastic response laws in eqns (4.8), (4.13), (4.17), (4.22) and (4.27) provide a
considerable flexibility for fitting actual strain hardening data over a fairly extended
range of strain.

The complete solution of the problem of spherical expansion for these materials
is given by eqns (3.14) and (3.23), with x,, x,. and x, given by eqns (3.10) and (3.12),
f¢(x) by eqn (4.4) and f”(x) by eqns (4.12), (4.16), (4.20), (4.24), or (4.29).

For the saturation hardening model of eqns (4.3) and (4.8), i.e.

2u(l — e73?) 0O<se<é

o = .1
Y

m {l + k(1 — (’—k/z)y} (€ < e < x),
K
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the solution for the pressure is given by eqns (3.23), (4.4) and (4.12) as

/ “3 a — Qg
3“01(0(—1) (@p € a = q)
2 l a — Qg K a = Qp Y } o Q()]
_.Y _ - Y +]_
<3 [l-f—K\b”{ Yo — 1) y[(a—l) ‘1’] Yo
(o) = a = o)

{5.2)
The stress distribution is as follows:
(a) Elastic phase (ag < a < a))
4 3 3 3 3
o,y = 5;&(] - apla*t - a’lr’) - P
(a <r<b). 5.3)
4 3 3 3 3
Gy = Oge = -jp.(l — adla’ ¥l + a'l2r?) -= P

(b) Elastic-plastic phase (o), < a < a3)

2 1 ok ay a®
=ty ——— S s K (-2 (1 - )L -
g 371 + x { na ¥ ( a") < r“) P

g, + Y 1 + a’ - a
ag =g = g, — K{—7T
[i1H) b ] + K‘by ’.3

(asr=sc¢) (5.4)

and
2 1 a*—a} « ap\” )
r == + - —— — Y
Bt 1-3) o
a’ - a
+l-—2p
r? > (5.5)
(csr=<b),
2 at—ad
Cog = Ogg = O + T Y
(:T] bd 3 lbr3 )

with b and ¢ given by eqns (4.6) or

b = a* + adllas - 1); ¢ = (@ - adH. (5.6)
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{(c) Plastic phase (a» = a < x)
2 | ok ad\” a’y
= 5 - + - —_ -3 ] - —_— P
? 3 Y I+ ki {ln @y (l a’) ( r’”’)

Ty = Ogpp = Tpr +

asr=s b) (5.7)

Solutions for the pressure may be read off in a similar way for the hardening laws
(4.13), (4.17), (4.22) and (4.27).
For the hardening law (4.13):

( 4 a — Qg -
3 a((x—]) (g < a < q)
2 Y [ln - Qo K Qg = 1 I=2v13
3 lll(a—l) 1 -2v3|\a-1

P =<
-1 - w)“z*/"}] +§p(¢ - I+ aj/a) (ay<a<ay) (5.8

2 43 K oy — 1 1 -2v/3 a0 1-2v/3
LBYZI:InOl—l l—2y/3{<a—l> _<a> (a2 € a0 < x),

For the hardening law (4.17):

,

3”01((!— 1) (o S a < ay)
2 a — 0y (1 —B\U)(Ol—(ln) i _
P=43 Yz[ —41(01— ”+Kln¢{a_ | "B(a-an)}] +3u(¢ I + ap/ar)
(a0 Sa=a2) (5.9)
z a Ol—B(OL—OLo) < o<
L3Y3{ln(x—]+'(ln(!—-I—B((x—(xu)} (o < o < x),

For the hardening law (4.22):

ﬂ 2= % (vo=a<a;)
3“0((01—]) o=E=T
2 a = Qg 2 Qo — 1 Qg — |
3Y“[l"¢(a—n+3"{a—1'"a—1
F= 1 4
- (I =In(l =) - ]+|-¢}]+§u(¢—l+ao/a) (v Sasar)

- -1 -
g}’., In—2 4 2% llngi’-———ﬂlnm—"+ 2% (a2 S <)
3 a—-1 3

a—-1 a-1 a a ofla—1)

(5.10)
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For the hardening law (4.27):

(
4 o — =

—_ —— =2 Q0 =
3“0:((1- D (o ay)

2 o — Qg K 2 Y ’ (1"] Ty
= —_—t = ]
P 3Y5[‘ntl!(a—l)+ | +‘y<3> {(nuu— l>

AN 4
—ln(]_d’) H+3p.(tb—l+au/a) (rSasar)

2 a Kk (2\" a—-1\'"" a '”}]
jud - —- | In— = <
L3 Ys[lna -1 + 1 +'Y<3) {(lnao_ 1) ( nOlo) (Ca<a )

(5.11)

AN

The corresponding stress distributions may be read off from egns (3.14).

Plots of the solutions curves from eqns (5.2) and (5.11) are shown in Fig. 1b and
5b.

6. THE PRESSURE MAXIMUM INSTABILITY

Except for the special case B = | ineqn (5.9), the solutions in eqns (5.2) and (5.8)-
(5.10) predict that the pressure attains a maximum value and then decreases to zero.
For the solution given in eqns (5.11), the pressure increases monotonically, for suffi-
ciently small values of ag, or has local maximum and minimum values, for sufficiently
large values of ag; in either case, the pressure eventually increases without bound. In
the case of an elastic-perfectly plastic material (eqn (5.2), with k = 0) the pressure
maximum occurs just before the onset of total yield. Hill[8] suggested that the pressure
maximum is an instability point which corresponds to necking or bursting of the sphere.
This type of instability may be an important effect at the microlevel, where growth and
coalescence of voids in tensile stress fields may lead to rupture or crack propagation.

Conditions for the occurrence of stationary values of the applied load for expansion
of hollow spheres and cylinders of incompressible elastic solid material were obtained
in a recent paper by Carroll{9]. The instability condition for the spherical expansion
problem is equally valid for elastic-plastic materials, with the general hardening law.

The condition for stationary values of the applied pressure is obtained by differ-
entiation of the integral expression in eqns (3.11) and (3.12). i.e.,

o/
2 h(x”)—d—x— . 6.1)

=§ axn— la—1 ]—,\’

Use of Leibnitz’ rule gives

dpP _ 2 ap— 1 ag — | 2/3} Qo ao\
da_ﬂa—a@[a—]h{<a_l) " (a) : (6.2)

This may be written
dP 2 ag— | oy
— = -g|l— 3
da 3(a—a0){g<a—-l> é(a)}' 6.3

where the function g is defined by

glx) = xh(x*?). (6.4)
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Equation (6.3) gives the condition for stationary values of the pressure as

ap— | Qo
y =pl—]. 6.5
o(25) - (2) 6.5)

This may also be written

372 — N2
}\u Ty = Ap"Tp, (6.6)

where o, and o, denote the values of the compressive stress owy — 0, at the inner and
outer boundaries.

Differentiation of eqn (6.3) and use of eqn (6.5) gives an expression for d>P/da?
at a stationary point a = a*;

d2P * 2 a(l—] , (10—1 ao , fan
(daz) —3(01—00){_((1_ 1)2&’ <a—l>+q2g (a)}' 6.7)

It is evident from eqns (6.3) and (6.7) that the qualitative behavior of the pressure
is determined by the form of the function g on the interval (0, 1). If the uniaxial com-
pressive stress response function h is monotonic, then the function g may exhibit one
of three distinct types of behavior:

(A.) The function g is monotonic in the interval (0, 1). Then eqn (6.5) does not have
a real root a in ay < a < = (see Fig. 6a) and so the pressure in the spherical
expansion problem is also monotonic.

(B.) The function g has a maximum value in (0, 1). Then eqn (6.5) has one admissible
root a* (see Fig. 6b). Furthermore, it is evident that

*—1

g'(ap/a*)<0, g’ (:" — ') >0, (6.8)

so that eqn (6.7) gives (d?P/da”)* < 0. It follows that the pressure in the spherical
expansion problem increases to a maximum value of @ = a* and then decreases.
(C.) The function g has a local maximum and a local minimum in (0, 1), as shown in
Figs. 6¢c and d. Then the qualitative behavior of the pressure or allround tension
in spherical inflation depends on the value of the initial porosity a,. For sufficiently
large values of oy (thin-walled spheres), the argument (ay — /(a — 1) is only
slightly less than ao/a and eqn (6.5) has two admissible roots, o* and o**. It is
evident from Fig. 6¢c and eqn (6.7) that the pressure P has a local maximum value
at a = a*, decreases to a local minimum value at a = a**, and then increases
again. There is a critical value of «, for which the two roots a* and o** coincide;
in this case, the loading in the spherical expansion problem is monotonic, but
there is an inflection point. For smaller values of ay (thick-walled spheres), eqn
(6.5) does not have an admissible root (Fig. 6d) and the loading curve in spherical
expansion is monotonic.
In order to determine which type of behavior will occur for a particular elastic-
plastic hardening law, it is convenient to write the function g in terms of the strain e:

g()\B/Z) - e—Bele(e) = e—3d2o.‘ (69)
Differentiation shows that the function g increases monotonically as long as

do_ 3
2oy 6.10
de>20 ( )
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(6.5). (c) The function g(.x) has local maximum and minimum values in (0. 1) and eqn (6.5) has
ay (>1).

Fig. 6. Qualitative behavior of the function g(x) defined in equation (6.4), and admissible roots
two admissible roots. for sufficiently large values of ay. (d) The function gi.x) has local maximum

x
of eqn (6.5). The solid curve denotes glas/a) and the dashed curve denotes gllay — DAu -

1)}. (a) The function g(x) is monotonic on (0, I} and there are no admissible roots of eqn (6.5).
(b) The function g(x) has a maximum value in (0. 1} and there is one admissibie root of eqn

and minimum values in (0. 1) and eqn (6.5) has no admissible roots. for sufficiently small values
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If the material response law is such that the condition (6.10) is met for all compressive
strain (0 < e < x), then the behavior in spherical expansion is of type A. If the condition
is violated over a range €, < e < =, then the behavior is of type B. If the condition is
violated for a finite range €, < € < €», then the behavior is of type C.

While elastic-plastic response is typically of type B, all three types of behavior
are physically realistic. For example, the widely used Mooney-Rivlin nonlinearly elastic
response law admits all three types of behavior, depending on the value of the ratio of
the two material constants (Carroll[9]).

The hardening laws (4.8), (4.17), and (4.27) provide a convenient means of ana-
lyzing the pressure maximum instability. For elastic-perfectly plastic materials (x =
0), it is evident from eqn (6.6) that the pressure maximum cannot occur at or after the

onset of total yield, since o, = 0, = Y forall a = a;. For a) < a < a2, eqn (6.5)
becomes

%= =9‘i’<|—°‘—"), 6.11)

and this gives a quadratic equation whose admissible root a* is less than a, by an
amount of order ¥*. Thus, the maximum pressure occurs just before the onset of total
yield and the maximum pressure P* is slightly less than the pressure P, given byt

Q2

P, = % Yin (6.12)

('12"1'

More generally, the pressure maximum may occur before, at, or after the onset
of total yield. This may be seen from the response law (4.8) with y = 1, which has the
form of the saturation hardening law of Voce[11, 12] and Palm[]3]. Assuming that a*
= a, and substituting in egn (6.5) leads to

aw-1 «w_, 1 (6.13)

a-—1 a K

It follows that the pressure maximum occurs before, at, or after the onset of total yield,
depending on whether k < k, k = k, or k > k, with

_—=—t ==, (6.14)

A special limiting case of eqn (4.17), obtained by letting 3 — I, k — =, and YV —
0, gives the exponential hardening model

_ [ —e7 %) (0se<@
7 {(l — ) Ye'? (Ese<x). (6.15)

For this response law, the function g is constant for € = &, so that eqn (6.5) is satisfied
for all @ = ay. The pressure reaches its maximum value at the onset of total yield and
remains constant thereafter. This represents a limiting case between behavior of types
A and B. Indeed, a material with exponential plastic response law

o= -y Yer (€=e<x) ' (6.16)

exhibits behavior of type A for y > 3/2 and behavior of type B y < 3/2.

t This was shown by Carroli and Holt{10]. Terms of order y* were ignored in Hill’s[8] analysis, leading
to the conclusion that the pressure maximum occurs at the onset of total yield.
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Finally, for the response law (4.27), the function g decreases during the earlier
part of the plastic range, assuming that

k<1 / {é*’+-32—'yé*"¢/(l—lll)}, (6.17)

but it eventually increases again, so that the behavior in spherical expansion is of
type C.

7. THE EFFECT OF COMPRESSIBILITY

The assumption of incompressibility has led to a considerable simplification in the
analysis of the spherical expansion problem. The symmetry of the problem and the
condition that volume be preserved means that the deformation is known ab initio so
that the problem is reduced to finding the stress distribution. This is no longer the case
if the material is compressible. However, the important features of the corresponding
solution for compressible materials can be derived quite simply from the incompressible
solution, based on two observations.

The first observation is that the change in porosity of a hollow sphere is determined
by the deviatoric response of the material. The third equation (3.9) follows directly
from the equation of equilibrium and the boundary conditions, without any assumption
of incompressibility, and it involves only the deviatoric stress ¢ = o4y — o,,. If the
material response is such that hydrostatic and deviatoric effects are not coupled, then
o is determined by the deviatoric strain, and the P — a equation obtained by assuming
incompressibility is equally valid for compressible materials. In particular, the maxi-
mum pressure P* and the critical porosity a* are unchanged.

The P — a equation does not furnish a complete solution of the problem; it merely
relates the pressure to the porosity of the sphere or, equivalently, to the ratio a/b of
the inner and outer boundaries. The separate behavior of the inner and outer boundaries
is then obtained, for incompressible materials, from eqns (3.5). The second observation
is that if the hydrostatic response of a compressible material is linearly elastic, then
the volume strain of a material region is related to the average pressure in the region
through the linearly elastic response law. The average stress @;; in a body which is in
equilibrium under surface forces only, and occupies a region & with boundary a2, is
given by

1 1
-(7,'_,' = T/J’ﬁ i dv = "_/J:m 1, x; ds. (7.1

Here ©;; and o;; are the average and local components of Cauchy stress in a rectangular
Cartesian system, V is the volume of the region R, and 1, are components of the surface
force per unit area at a point on R with coordinates x;. The formula (7.1) is obtained
simply by using the equations of equilibrium and the divergence theorem.

For compressible materials, one must distinguish between internal pressure and
external allround tension, i.e. the boundary conditions (3.7) and (3.24) are no longer
equivalent. For internal pressure P, use of eqn (7.1) gives the average pressure P as

a3

P=—5—P, (7.2)

and the corresponding expression in the case of external allround tension is

- b
P= - mP (7.3)
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In either case,

= A I
P=-K> _K{bj_w 1}, (7.4)

where K is the bulk modulus of the material. Equations (7.2) and (7.4) give

b* - a*(1 - PIK) = b} — ad, (7.5)
and eqns (7.3) and (7.4) give
b* (1 = PIK) - & = b} - aj. (7.6)

A typical pressure-porosity equation, such as eqn (5.2), may be written as

3 3
P =P, a) =P ( b by ) ) (7.7)

b ~ a®’ b} - aj

Equation (7.5) or (7.6) may now be used to eliminate either «* or b* from eqn (7.7),
thus relating the pressure or allround tension P to the motion of the inner or outer
boundaries of a compressible hollow sphere.

8. EXPANSION OF A SPHERICAL CAVITY IN AN INFINITE MEDIUM

In the case of expansion of a spherical cavity of initial radius a, in an infinite
medium, under uniform internal pressure P, the pressure is given by

= 2 : 2/3 d.\'
P = 3 adlad h(x ) l —x ’ (8‘1)
or
P = f(l) - f(a(3)/03). (8.2)

Differentiation of eqn (8.1) with respect to a gives

P 24} ag
da  ald® — aj) h (az) ' 8.3

so that the pressure increases monotonically.
The initial response is elastic, and the elastic phase persists until the cavity radius
reaches the value a,, given by the first equations (3.12) and (4.5) as

at = adl(1 — ). (8.4)

The pressure in the elastic phase is given by eqns (4.4) and (8.2) as
4 3.3
P = -jp.(l — apla?) (ap < a < ay), (8.5)
and the pressure P, at the onset of yielding is given by eqns (8.4) and (8.5) as

P| = Y. (86)

Wi
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As the pressure is increased, a spherical elastic-plastic interface propagates out-
ward, with radius ¢ given by eqn (5.6). Solutions for the pressure in the elastic-plastic
phase (¢ < a < x), for the five special hardening laws, may be read off from egns
(4.4), (4.12), (4.16), (4.20), (4.24), (4.29), and (8.2).

For the hardening law (4.8):

2 2 a - a | x ap\” N
P—3Y+3Y.[ln e <|—a3) -l (8.7)

For the hardening law (4.13):

2 at - a?) K’ ay o 2/3
re3n ['" va® 1= 293 }(7> —0 W—M} 9

For the hardening law (4.17):

202 @’ — aj (1 = B)a® - aa)]
P=3Y+3Ys [ln ot x In T B — (8.9)

P =

w2

For the hardening law (4.22):

P =

WiN

2
TN R
ad
—;—(1—¢)ln(1—¢)+1—¢ . (8.10)

For the hardening law (4.27):
2 at - ad K 2\ a\'*Y
+ - + - —
Y 3 Ys |:lr1 Ya? 1+ v (3) In a8>

- (nnl L ‘b)m}] . @1

Plots of the solution curves from eqns (8.5) and (8.7-8.11) are shown in Figs. Id,
2b, 3b, 4b and 5c. Equations (8.7)~(8.10) predict finite asymptotic values for the pres-
sure, except for the special case B = 1 in eqn (8.9). In this case, and also for eqn (8.11),
the pressure increases without bound.

The stress distribution given in equations (5.3)-(5.7) for the hardening law (4.8) is
valid also for pressurization of a spherical cavity in an infinite medium, with the pressure
P now given by eqns (8.5) and (8.7). Stress distributions for the other hardening models
are obtained in a similar manner.

The solutions given by eqns (8.5) and (8.7)-(8.11) pertain also to expansion of a
spherical cavity in an infinite medium due to remote allround tension.

P =

Wi

9. THE REQUIRED RANGE OF STRAIN

In using the hardening models in Section 4 to fit experimental data, it is necessary
to know the range of strains that is encountered in the spherical expansion problem.
The relevant range is that which occurs up to the pressure maximum P*, at porosity
o*,

Some useful information can be obtained, quite simply, from the kinematics of the
problem. The maximum strain occurs at the inner boundary, and it is given by eqns
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Table . Maximum strain at total yield

tolby .05 N 2 3 4 .5 .6 7 R 9
W= .005¢' 2.48 1.20 328 A4 .050 026 015 0097 .0065 046
W= .0he' 2.94 1.60 .544 212 098 082 03 019 013 0092

(2.3) and (3.5) as

a —~ 1

€, = %In 9.1)

(!()_].

Suppose now that strain hardening data is available over the range 0 < € < é. Then
the problem of spherical expansion can be solved up to porosity a, given by

a=1+ (@ — e, 9.2)

Continuation of the solution to higher values of a requires extrapolation of the available
data.

The value a, of the porosity at the onset of total yield does not depend on the
hardening law. It is given by eqn (4.6) as

az = ag/(l — ) W = Y2p). (9.3)

Substitution from eqn (9.3) in eqn (9.1) shows that solution of the problem of spherical

expansion up to total yield requires knowledge of the stress-strain response over the
range 0 < e < ¢*, with

+_2|n a()—]""d‘
3 (a0 — DU =Y’

(9.4)

or

m
|

L2 b}
= 3ln{l s ‘waa}. 9.5)

This range is illustrated by Table 1, which shows values of e* and ay/b, for ¢ = .005
(¢ = .00334) and for ¢ = .01 (¢ = .0067):

Finally, for a given hardening law, eqn (6.5) determines the value a* at the pressure
maximum, and substitution in eqn (9.1) gives the corresponding maximum strain.
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